Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise.

نویسندگان

  • Shunsaku Koga
  • Thomas J Barstow
  • Dai Okushima
  • Harry B Rossiter
  • Narihiko Kondo
  • Etsuko Ohmae
  • David C Poole
چکیده

Near-infrared assessment of skeletal muscle is restricted to superficial tissues due to power limitations of spectroscopic systems. We reasoned that understanding of muscle deoxygenation may be improved by simultaneously interrogating deeper tissues. To achieve this, we modified a high-power (∼8 mW), time-resolved, near-infrared spectroscopy system to increase depth penetration. Precision was first validated using a homogenous optical phantom over a range of inter-optode spacings (OS). Coefficients of variation from 10 measurements were minimal (0.5-1.9%) for absorption (μa), reduced scattering, simulated total hemoglobin, and simulated O2 saturation. Second, a dual-layer phantom was constructed to assess depth sensitivity, and the thickness of the superficial layer was varied. With a superficial layer thickness of 1, 2, 3, and 4 cm (μa = 0.149 cm(-1)), the proportional contribution of the deep layer (μa = 0.250 cm(-1)) to total μa was 80.1, 26.9, 3.7, and 0.0%, respectively (at 6-cm OS), validating penetration to ∼3 cm. Implementation of an additional superficial phantom to simulate adipose tissue further reduced depth sensitivity. Finally, superficial and deep muscle spectroscopy was performed in six participants during heavy-intensity cycle exercise. Compared with the superficial rectus femoris, peak deoxygenation of the deep rectus femoris (including the superficial intermedius in some) was not significantly different (deoxyhemoglobin and deoxymyoglobin concentration: 81.3 ± 20.8 vs. 78.3 ± 13.6 μM, P > 0.05), but deoxygenation kinetics were significantly slower (mean response time: 37 ± 10 vs. 65 ± 9 s, P ≤ 0.05). These data validate a high-power, time-resolved, near-infrared spectroscopy system with large OS for measuring the deoxygenation of deep tissues and reveal temporal and spatial disparities in muscle deoxygenation responses to exercise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Muscle deoxygenation in the quadriceps during ramp incremental cycling: Deep vs. superficial heterogeneity.

Muscle deoxygenation (i.e., deoxy[Hb + Mb]) during exercise assesses the matching of oxygen delivery (Q̇O2) to oxygen utilization (V̇O2). Until now limitations in near-infrared spectroscopy (NIRS) technology did not permit discrimination of deoxy[Hb + Mb] between superficial and deep muscles. In humans, the deep quadriceps is more highly vascularized and oxidative than the superficial quadriceps....

متن کامل

Kinetics of muscle deoxygenation and microvascular PO(2) during contractions in rat: comparison of optical spectroscopy and phosphorescence-quenching techniques.

The overarching presumption with near-infrared spectroscopy measurement of muscle deoxygenation is that the signal reflects predominantly the intramuscular microcirculatory compartment rather than intramyocyte myoglobin (Mb). To test this hypothesis, we compared the kinetics profile of muscle deoxygenation using visible light spectroscopy (suitable for the superficial fiber layers) with that fo...

متن کامل

Near‐infrared spectroscopy of superficial and deep rectus femoris reveals markedly different exercise response to superficial vastus lateralis

To date our knowledge of skeletal muscle deoxygenation as measured by near-infrared spectroscopy (NIRS) is predicated almost exclusively on sampling of superficial muscle(s), most commonly the vastus lateralis (VL-s). Recently developed high power NIRS facilitates simultaneous sampling of deep (i.e., rectus femoris, RF-d) and superficial muscles of RF (RF-s) and VL-s. Because deeper muscle is m...

متن کامل

Pronounced muscle deoxygenation during supramaximal exercise under simulated hypoxia in sprint athletes.

The purpose of this study was to determine whether acute hypoxia alters the deoxygenation level in vastus lateralis muscle during a 30 s Wingate test, and to compare the muscle deoxygenation level between sprint athletes and untrained men. Nine male track sprinters (athletic group, VO2max 62.5 ± 4.1 ml/kg/min) and 9 healthy untrained men (untrained group, VO2max 49.9 ± 5.2 ml·kg(-1)·min(-1)) pe...

متن کامل

Methodological validation of the dynamic heterogeneity of muscle deoxygenation within the quadriceps during cycle exercise.

The conventional continuous wave near-infrared spectroscopy (CW-NIRS) has enabled identification of regional differences in muscle deoxygenation following onset of exercise. However, assumptions of constant optical factors (e.g., path length) used to convert the relative changes in CW-NIRS signal intensity to values of relative concentration, bring the validity of such measurements into questio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 118 11  شماره 

صفحات  -

تاریخ انتشار 2015